4.8 Article

Robust Graphene/Poly(vinyl alcohol) Janus Aerogels with a Hierarchical Architecture for Highly Efficient Switchable Separation of Oil/Water Emulsions

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 40, 页码 36638-36648

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b11277

关键词

switchable emulsion separation; Janus aerogel; graphene; poly(vinyl alcohol); hierarchical architecture

资金

  1. National Natural Science Foundation of China [51703113, 51803105]
  2. Shandong Provincial Natural Science Foundation [ZR2017BEM039, ZR2017BEM011, ZR2016XJ001]
  3. China Postdoctoral Science Foundation [2018M630763]
  4. Qingdao Postdoctoral Application Research Project

向作者/读者索取更多资源

Given the complexity and diversity of actual oily sewages, developing multifunctional separation materials with features of high separation efficiency and low energy consumption for separating diverse oil/water emulsions is urgently needed, yet it remains a formidable challenge till now. Herein, a superior graphene/poly(vinyl alcohol) Janus aerogel (J-CGPA), showing an intriguing three-dimensional (3D) hierarchical architecture (a dense skin-layer and a larger internal cell network) and desirable asymmetric wettability, was exploited via a simple direct freeze-shaping technique and subsequent mussel-inspired hydrophilic modification. Benefiting from the controlled unilateral decoration of dopamine, the resultant aerogels displayed completely opposite superwettability on two antithetic sides, i.e., one side is highly hydrophobic (water contact angle (WCA), 143 degrees), whereas the other side is superhydrophilic. On the basis of the favorable 3D hierarchical structure and binary cooperative superwetting properties, the Janus aerogels achieved a remarkable switchable separation performance for both highly emulsified oil-in-water and water-in-oil emulsions as well as stratified oil/water mixtures accompanied with outstanding separation efficiencies. Particularly, an ultrahigh permeation flux of 1306 L m(-2) h(-1) along with a high rejection efficiency of 99.7% was acquired solely under the driving of gravity (<1 kPa), which is 1-2 order of magnitude higher than that of pioneering two-dimensional Janus polymeric/inorganic membranes recently reported. Moreover, together with robust reusability, this novel 3D Janus aerogel indicates a promising practical application for high-performance oily wastewater remediation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据