4.8 Article

Vancomycin- and Strontium-Loaded Microspheres with Multifunctional Activities against Bacteria, in Angiogenesis, and in Osteogenesis for Enhancing Infected Bone Regeneration

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 34, 页码 30596-30609

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b10219

关键词

microsphere; antibacterial; angiogenesis; osteogenesis; bone regeneration

资金

  1. National Key R&D Program of China [2017YFC1104302/4300]
  2. National Natural Science Foundation of China [51873018, 51873013]
  3. Beijing Municipal Natural Science Foundation [7182068, 7161001]

向作者/读者索取更多资源

Biomaterials that have capacities to simultaneously induce bone regeneration and kill bacteria are in demand because bone defects face risks of severe infection in clinical therapy. To meet the demand, multifunctional biodegradable microspheres are fabricated, which contain vancomycin to provide antibacterial activity and strontium-doped apatite to provide osteocompatibility. Moreover, the strontium component shows activity in promoting angiogenesis, which further favors osteogenesis. For producing the microspheres, vancomycin is loaded into mesoporous silica and embedded in polylactide-based microspheres via the double emulsion technique and the strontium-doped apatite is deposited onto the microspheres via biomineralization in strontium-containing simulated body fluid. Sustained release behaviors of both vancomycin and Sr2+ ions are achieved. The microspheres exhibit strong antibacterial effect against Staphylococcus aureus, while demonstrating excellent cell/tissue compatibility. Studies of differentiation confirm that the introduction of strontium element strengthens the angiogenic and osteogenic expressions of mesenchymal stromal cells. Subcutaneous injection of the microspheres into rabbit's back confirms their effectiveness in inducing neovascularization and ectopic osteogenesis. Finally, an infected rabbit femoral condyle defect model is created with S. aureus infection and the multifunctional microspheres are injected, which display significant antibacterial activity in vivo and achieve efficient new bone formation in comparison with biomineralized microspheres without vancomycin loading. The vancomycin- and strontium-loaded microspheres, being biomineralized, injectable, and biodegradable, are attractive because of their flexibility in integrating multiple functions into one design, whose potentials in treating infected bone defects are highly expected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据