4.8 Article

Screen-Printing of a Highly Conductive Graphene Ink for Flexible Printed Electronics

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 35, 页码 32225-32234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b04589

关键词

graphene ink; screen printing; flexible; printed electronics; supercapacitor

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/N010345/1, EP/L012022/1, EP/K016954/1, EP/L020742/1]
  2. National Natural Science Foundation of China [61804185]
  3. EPSRC [EP/L012022/1] Funding Source: UKRI

向作者/读者索取更多资源

Conductive inks for the future printed electronics should have the following merits: high conductivity, flexibility, low cost, and compatibility with wide range of substrates. However, the state-of-the-art conductive inks based on metal nanoparticles are high in cost and poor in flexibility. Herein, we reported a highly conductive, low cost, and super flexible ink based on graphene nanoplatelets. The graphene ink has been screen-printed on plastic and paper substrates. Combined with postprinting treatments including thermal annealing and compression rolling, the printed graphene pattern shows a high conductivity of 8.81 x 10(4) S m(-1) and good flexibility without significant conductivity loss after 1000 bending cycles. We further demonstrate that the printed highly conductive graphene patterns can act as current collectors for supercapacitors. The supercapacitor with the printed graphene pattern as the current collector and printed activated carbon as the active material shows a good rate capability of up to 200 mV s(-1). This work potentially provides a promising route toward the large-scale fabrication of low cost yet flexible printed electronic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据