4.8 Article

Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 37, 页码 33697-33705

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b12620

关键词

acid-triggered nanoexpansion; photodynamic therapy; porphyrin; RAFT polymerization; aggregation caused quenching (ACQ)

资金

  1. Shanghai Natural Science Foundation [18ZR1408300]
  2. National Natural Science Foundation of China [21574039, 21875063]

向作者/读者索取更多资源

Photodynamic therapy (PDT) as a noninvasive and selective treatment technology has presented great potential in cancer prevention and precision medicine, but its therapeutic efficacy is still greatly inhibited by the limitations of photosensitizers (PSs) in the microenvironment such as the aggregation caused quenching (ACQ) of PSs. Herein, we proposed an acid-triggered nanoexpansion method to further reduce the aggregation of photosensitizers by constructing acetal-based polymeric micelles. A pH-responsive amphiphilic block copolymer, POEGMA-b-[PTTMA-co-PTPPC6MA] was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and self-assembled into spherical micelles. In the normal physiological environment, the micelles were stable and had good biocompatibility. Upon entry into the acidic microenvironment of the tumor, the acid-responsive hydrophobic 2, 4, 6-trimethoxybenzaldehyde in the micelles hydrolyzed and generated a hydrophilic diol moiety. Although the hydrophility of the micellar core was increased, the assembled structure of block copolymers was not dissociated but expanded. The responsive expansion of the micelles could allow the photosensitizers to well-disperse in the core, whereas more tumor-dissolved oxygen entered the micelles. This phenomenon could provide a better nanoenvironment for photosensitizers to reduce the ACQ of the photosensitizers, leading to more singlet oxygen (O-1(2)) produced under the laser irradiation (650 nm). Both in vitro and in vivo studies have demonstrated that the remarkable photodynamic therapeutic efficacy of acid-responsive micelles could be realized. Thus, the acid-triggered nanoexpansion method might provide more possibilities to develop efficient platforms for treating cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据