4.8 Article

High-Performance Quantum-Dot Light-Emitting Transistors Based on Vertical Organic Thin-Film Transistors

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 39, 页码 35888-35895

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b11198

关键词

organic transistors; vertical transistors; quantum-dot light-emitting diodes; charge balance; active matrix displays

资金

  1. National Key Research and Development Program of China [2016YFB0401103]
  2. National Natural Science Foundation of China [61974029]

向作者/读者索取更多资源

In this work, a novel vertical quantum-dot light-emitting transistor (VQLET) based on a vertical organic thin-film transistor is successfully fabricated. Benefiting from the new vertical architecture, the VQLET is able to afford an extremely high current density, which allows most of the organic thin film transistors (OTFT) even with low mobility (for instance, poly(3-hexylthiophene)) to drive a quantum-dot light-emitting diode (QLED), which was previously unavailable. Moreover, the hole injection barrier could be modulated by the additional gate electrode, which precisely optimizes the charge balance in the device, a critical issue in QLED, resulting in the precise control of current density and brightness of the VQLET. The VQLET shows a high performance with a maximum current efficiency of 37 cd/A. Furthermore, integrating OTFT and QLED into a single device, the VQLET features drastic advantages by realizing active matrix quantum-dot light-emitting diodes (AMQLEDs), which significantly reduces the number of transistors and frees the large area fraction occupied by transistors. Hence, these results indicate that the VQLET provides a new strategy for realizing a low-cost, solution-processed, high-performance OTFT-AMQLED for the flat panel display technology. Moreover, the novel design offers a unique method to exquisitely control the charge balance and maximize the efficiency the QLED.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据