4.5 Article

A machine learning approach for mapping the very shallow theoretical geothermal potential

期刊

GEOTHERMAL ENERGY
卷 7, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s40517-019-0135-6

关键词

Geothermal potential; Very shallow system; Geographic Information Systems; Machine learning; Switzerland

资金

  1. Swiss Innovation Agency Innosuisse
  2. Swiss National Science Foundation under Mobility Fellowship [P300P2 174514]
  3. Swiss National Science Foundation (SNF) [P300P2_174514] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The very shallow geothermal potential (vSGP) is increasingly recognized as a viable resource for providing clean thermal energy in urban and rural areas. This is primarily due to its reliability, low-cost installation, easy maintenance, and little constraints regarding ground-related laws and policies. We propose a methodology to extract the theoretical vSGP (installed in the uppermost 10 m of the ground, and mostly at depths of 1-2 m) at the national scale for Switzerland, based on a combination of Geographic Information Systems, traditional modelling, and machine learning (ML). The theoretical vSGP is based on the estimation of three thermal characteristics of the ground that impact significantly thegeothermal potential, namely the monthly temperature at various depths in the surface layer, the thermal conductivity, and the thermal diffusivity. Each of the three variables is estimated separately, to a depth of 1 m below the surface, using the following general strategy: (1) collect significant data related to the variable, (2) if not existing, extract values for the variable at available locations with the help of traditional models and part of the data as input for these models, (3) train a ML model (with the Random Forests algorithm) using the extracted variable values as examples (training output labels) and related information contained in the data as features (training input samples), (4) use the trained ML model to estimate the variable in unknown locations, (5) estimate the uncertainty attached to the estimations. The methodology estimates values for (200 x 200) (m(2)) pixels forming a grid over Switzerland. The strategy, however, can be generalized to any country with significant data (topographic, weather, and surface layer/soil data) available. The results indicate a very non-negligible potential for very shallow geothermal systems in Switzerland.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据