4.6 Article

Mussel-Inspired Cell/Tissue-Adhesive, Hemostatic Hydrogels for Tissue Engineering Applications

期刊

ACS OMEGA
卷 4, 期 7, 页码 12647-12656

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b01302

关键词

-

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science and Technology [NRF-2019R1I1A3A01063627, NRF-2017R1D1A3B03031234]

向作者/读者索取更多资源

The combination of multiple physiological (swelling, porosity, mechanical, and biodegradation) and biological (cell/tissue-adhesive, cell proliferation, and hemostatic) properties on a single hydrogel has great potential for skin tissue engineering. Adhesive hydrogels based on polydopamine (PDA) have become the most popular in the biomedical field; however, integrating multiple properties on a single adhesive hydrogel remains a challenge. Here, inspired by the chemistry of mussels, we developed PDA-sodium alginate-polyacrylamide (PDA-SA-PAM)-based hydrogels with multiple physiological and biological properties for skin tissue engineering applications. The hydrogels were prepared by alkali-induced polymerization of DA followed by complexation with SA in PAM networks. The chemical composition of the hydrogels was characterized by X-ray photoelectron spectroscopy. PDA-SA complexed chains were homogeneously dispersed in the PAM network and exhibited good elasticity and excellent mechanical properties, such as a compressive stress of 0.24 MPa at a compression strain of 70% for 0.4PDA-SA-PAM. The adhesive hydrogel also maintained a highly interconnected porous structure (similar to 94% porosity) along with PDA microfibrils. The hydrogel possesses outstanding swelling and biodegradability properties. Owing to the presence of the PDA-SA complex in the PAM network, the hydrogels show good adhesion to various substrates (plastic, skin, glass, computer screens, and leaves); for example, the adhesive strength of the 0.4PDA-SA-PAM to porcine skin was 24.5 kPa. The adhesive component of the PDA-SA chains in the PAM network significantly improves the cell proliferation, cell attachment, cell spreading, and functional expression of human skin fibroblasts (CCD-986sk) and keratinocytes. Moreover, the PDA chains exhibited good hemostatic properties, resulting in rapid blood coagulation. Considering their excellent cell affinity, and rapid blood coagulation ability, these mussel-inspired hydrogels have substantial potential for skin tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据