4.6 Article

Empirical Modeling of Electron Transport in Fe/Ti Layered Double Hydroxide Using Exponential, Gaussian and Mixed Gauss-Exponential Distribution

期刊

ACS OMEGA
卷 4, 期 6, 页码 10599-10609

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.9b01345

关键词

-

向作者/读者索取更多资源

Fe/Ti-layered double hydroxide (LDH) has been hydrothermally prepared and characterized using X-ray diffraction, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and UV-visible diffuse reflectance spectroscopy for evaluation of its structure, morphology, and optical properties. The purpose of doping Ti4+ with Fe3+ toward the synthesis of Fe/Ti LDH is to extend the absorption of the nanomaterial to longer wavelength, which is known to exhibit higher electron transport performance. To provide a practical realization, electron transport modeling across the band gap has been interpreted using exponential, Gaussian, and mixed Gauss-exponential distribution. The conduction band energy (E-C) has been calculated by using the observed values of band gap (E-g) and potential of the LDH. A detailed study has been undertaken to investigate the pattern of theoretical density of the LDH on the basis of unknown (E-C = 0) and known (calculated) values of E-C. Fermi-Dirac statistics has been used extensively for estimating the occupancy probability of electron (e(-))-hole (h(+)) pair formation within the valence and conduction bands, respectively, with different temperatures, as well as for given energy levels. Monte Carlo simulations have also been performed to evaluate the suitability of the choice of the model, on the basis of the probability of availability of e(-) s within the conduction band. To provide a practical realization of the suggested models, electronic transition across the band gap of Fe/Ti LDH has been extensively investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据