4.7 Article

Effects of the Natural Peptide Crotamine from a South American Rattlesnake on Candida auris, an Emergent Multidrug Antifungal Resistant Human Pathogen

期刊

BIOMOLECULES
卷 9, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/biom9060205

关键词

rattlesnake venom toxin; crotamine; antimicrobial peptide; multiresistant strain; fungus; Candida spp

资金

  1. Sao Paulo Research Foundation (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo-FAPESP) [2013/13392-4, 2017/02413-1]
  2. National Council of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico-CNPq) [311815/2012-0, 475739/2013-2, 39337/2016-0]
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES) [001]

向作者/读者索取更多资源

Invasive Candida infections are an important growing medical concern and treatment options are limited to a few antifungal drug classes, with limited efficacies depending on the infecting organism. In this scenario, invasive infections caused by multiresistant Candida auris are emerging in several places around the world as important healthcare-associated infections. As antimicrobial peptides (AMPs) exert their activities primarily through mechanisms involving membrane disruption, they have a lower chance of inducing drug resistance than general chemical antimicrobials. Interestingly, we previously described the potent candicidal effect of a rattlesnake AMP, crotamine, against standard and treatment-resistant clinical isolates, with no hemolytic activity. We evaluated the antifungal susceptibility of several Candida spp. strains cultured from different patients by using the Clinical and Laboratory Standards Institute (CLSI) microdilution assay, and the antifungal activity of native crotamine was evaluated by a microbial growth inhibition microdilution assay. Although all Candida isolates evaluated here showed resistance to amphotericin B and fluconazole, crotamine (40-80 mu M) exhibited in vitro activity against most isolates tested. We suggest that this native polypeptide from the South American rattlesnake Crotalus durissus terrificus has potential as a structural model for the generation of a new class of antimicrobial compounds with the power to fight against multiresistant Candida spp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据