4.7 Article

Chronic Heat Stress Induces Acute Phase Responses and Serum Metabolome Changes in Finishing Pigs

期刊

ANIMALS
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/ani9070395

关键词

finishing pigs; chronic heat stress; acute-phase proteins; metabolomics

资金

  1. National Natural Science Foundation of China [31802071]
  2. State Key Laboratory of Animal Nutrition Foundation [2004DA125184F1711]
  3. China Postdoctoral Science Foundation [2018M642454]

向作者/读者索取更多资源

Simple Summary There is limited information on the serum metabolome of heat-stressed finishing pigs. Our results indicated that heat stress led to oxidative stress and acute phase response. Pigs chronically exposed to high ambient temperature were in negative energy balance status. Three gut microbiome-derived metabolites (fluorine, lyxose 1, and D-galacturonic) were likely to be biomarkers for monitoring animal health. Heat stress (HS) is a main environmental challenge affecting the animal welfare and production efficiency in pig industry. In recent years, numerous reports have studied the alterations in gene expressions and protein profiles in heat-stressed pigs. However, the use of metabolome to unravel adaptive mechanisms of finishing pig in response to chronic HS have not yet been elucidated. We aimed to investigate the effects of chronic HS on serum metabolome in finishing pigs, and to identify the biomarkers of heat stress. Pigs (n = 8 per treatment) were exposed to either thermal neutral (TN; 22 degrees C) or heat stress (HS, 30 degrees C) conditions for three weeks. Serum metabonomics of TN- and HS-treated pigs were compared using the GC-MS approach. Metabonomics analysis revealed that twenty-four metabolites had significantly different levels in TN compared to HS (variable importance in the projection values >1 and p < 0.05). These metabolites are involved in carbohydrate, amino acid, fatty acid, amines metabolism, and gut microbiome-derived metabolism. Three serum monoses (glucose, mannose 2, and galactose) and 6-phosphogluconic acid were decreased, indicating insufficient source of fuel for energy supply, resulting in negative energy balance (NEB) in heat-stressed pigs. Increased levels of non-esterified fatty acid (myristic acid, palmitic acid, and linoleic acid) and short-chain fatty acids (3-hydroxybutanoic acid and maleic acid) suggested fat decomposition compensating for energy shortage, which was an adaptive response to NEB. Increased concentrations of fluorine, lyxose 1, and D-galacturonic acid were significantly correlated with the levels of acute phase proteins (HP, LBP, alpha 2-HSG, and Lysozyme), suggesting acute phase response in HS-stressed pigs. These metabolites are expected to be novel biomarkers of chronic HS in pigs, yet the use of which awaits further validation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据