4.6 Article

Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model

期刊

出版社

BMC
DOI: 10.1186/s40478-019-0750-2

关键词

Amyotrophic lateral sclerosis; Neurodegeneration; FUS; Histone deacetylases; HDAC inhibitors; Epigenetics; Metabolism

资金

  1. Fund for Scientific Research Flanders (FWO-Vlaanderen) [G.0431.12 N, G.0440.12 N]
  2. Interuniversity Attraction Poles Programme [P7/16]
  3. Belgian Science Policy Office
  4. Muscular Dystrophy Association (MDA) [577668]
  5. ALS Liga
  6. European Community [259867]
  7. ALS Therapy Alliance
  8. ALS Association [14-LGCA-181]
  9. Thierry Latran Foundation
  10. 'Opening the Future' Fund (KU Leuven)
  11. Laevers Fund for ALS Research
  12. 'Agency for Innovation by Science and Technology in Flanders' (IWT-Vlaanderen)
  13. Saastamoinen foundation
  14. Instrumentarium Science foundation
  15. Finnish Cultural foundation
  16. Een Hart voor ALS

向作者/读者索取更多资源

Dysregulation of epigenetic mechanisms is emerging as a central event in neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). In many models of neurodegeneration, global histone acetylation is decreased in the affected neuronal tissues. Histone acetylation is controlled by the antagonistic actions of two protein families -the histone acetyltransferases (HATs) and the histone deacetylases (HDACs). Drugs inhibiting HDAC activity are already used in the clinic as anti-cancer agents. The aim of this study was to explore the therapeutic potential of HDAC inhibition in the context of ALS. We discovered that transgenic mice overexpressing wild-type FUS (Tg FUS+/+), which recapitulate many aspects of human ALS, showed reduced global histone acetylation and alterations in metabolic gene expression, resulting in a dysregulated metabolic homeostasis. Chronic treatment of Tg FUS+/+ mice with ACY-738, a potent HDAC inhibitor that can cross the blood-brain barrier, ameliorated the motor phenotype and substantially extended the life span of the Tg FUS+/+ mice. At the molecular level, ACY-738 restored global histone acetylation and metabolic gene expression, thereby re-establishing metabolite levels in the spinal cord. Taken together, our findings link epigenetic alterations to metabolic dysregulation in ALS pathology, and highlight ACY-738 as a potential therapeutic strategy to treat this devastating disease.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据