4.8 Article

Topology optimization and 3D printing of multimaterial magnetic actuators and displays

期刊

SCIENCE ADVANCES
卷 5, 期 7, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aaw1160

关键词

-

资金

  1. Defense Advanced Research Projects Agency (DARPA)
  2. Space and Naval Warfare Systems Center Pacific (SSC Pacific) [66001-15-C-4030]

向作者/读者索取更多资源

Upcoming actuation systems will be required to perform multiple tightly coupled functions analogous to their natural counterparts; e.g., the ability to control displacements and high-resolution appearance simultaneously is necessary for mimicking the camouflage seen in cuttlefish. Creating integrated actuation systems is challenging owing to the combined complexity of generating high-dimensional designs and developing multifunctional materials and their associated fabrication processes. Here, we present a complete toolkit consisting of multiobjective topology optimization (for design synthesis) and multimaterial drop-on-demand three-dimensional printing for fabricating complex actuators (>10(6) design dimensions). The actuators consist of soft and rigid polymers and a magnetic nanoparticle/polymer composite that responds to a magnetic field. The topology optimizer assigns materials for individual voxels (volume elements) while simultaneously optimizing for physical deflection and high-resolution appearance. Unifying a topology optimization-based design strategy with a multimaterial fabrication process enables the creation of complex actuators and provides a promising route toward automated, goal-driven fabrication.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据