4.3 Article

Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study

期刊

ABDOMINAL RADIOLOGY
卷 44, 期 10, 页码 3336-3349

出版社

SPRINGER
DOI: 10.1007/s00261-019-02122-z

关键词

Renal cell carcinoma; Fuhrman grade; Magnetic resonance imaging; Radiomics; Texture analysis

向作者/读者索取更多资源

Purpose The study evaluated the usefulness of magnetic resonance imaging (MRI) texture parameters in differentiating clear cell renal carcinoma (CC-RCC) from non-clear cell carcinoma (NC-RCC) and in the histological grading of CC-RCC. Materials and methods After institutional ethical approval, this retrospective study analyzed 33 patients with 34 RCC masses (29 CC-RCC and five NC-RCC; 19 low-grade and 10 high-grade CC-RCC), who underwent MRI between January 2011 and December 2012 on a 1.5-T scanner (Avanto, Siemens, Erlangen, Germany). The MRI protocol included T2-weighted imaging (T2WI), diffusion-weighted imaging [DWI; at b 0, 500 and 1000 s/mm(2) with apparent diffusion coefficient (ADC) maps] and T1-weighted pre and postcontrast [corticomedullary (CM) and nephrographic (NG) phase] acquisition. MR texture analysis (MRTA) was performed using the TexRAD research software (Feedback Medical Ltd., Cambridge, UK) by a single reader who placed free-hand polygonal region of interest (ROI) on the slice showing the maximum viable tumor. Filtration histogram-based texture analysis was used to generate six first-order statistical parameters [mean intensity, standard deviation (SD), mean of positive pixels (MPP), entropy, skewness and kurtosis] at five spatial scaling factors (SSF) as well as on the unfiltered image. Mann-Whitney test was used to compare the texture parameters of CC-RCC versus NC-RCC, and high-grade versus low-grade CC-RCC. P value < 0.05 was considered significant. A 3-step feature selection was used to obtain the best texture metrics for each MRI sequence and included the receiver-operating characteristic (ROC) curve analysis and Pearson's correlation test. Results The best performing texture parameters in differentiating CC-RCC from NC-RCC for each sequence included (area under the curve in parentheses): entropy at SSF 4 (0.807) on T2WI, SD at SSF 4 (0.814) on DWI b500, SD at SSF 6 (0.879) on DWI b1000, mean at SSF 0 (0.848) on ADC, skewness at SSF 2 (0.854) on T1WI and skewness at SSF 3 (0.908) on CM phase. In differentiating high from low-grade CC-RCC, the best parameters were: entropy at SSF 6 (0.823) on DWI b1000, mean at SSF 3 (0.889) on CM phase and MPP at SSF 5 (0.870) on NG phase. Conclusion Several MR texture parameters showed excellent diagnostic performance (AUC > 0.8) in differentiating CC-RCC from NC-RCC, and high-grade from low-grade CC-RCC. MRTA could serve as a useful non-invasive tool for this purpose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据