4.6 Article

Ultrasensitive Detection of Parathyroid Hormone through Fast Silver Deposition Induced by Enzymatic Nitroso Reduction and Redox Cycling

期刊

ACS SENSORS
卷 4, 期 6, 页码 1641-1647

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssensors.9b00456

关键词

immunosensor; silver deposition; redox cycling; parathyroid hormone; DT-diaphorase

资金

  1. National Research Foundation of Korea [2018R1A2B2004122, 2017M3A7-B4041973, 2017M3A9B6062020, 2016M3A7B4910538]

向作者/读者索取更多资源

Enzymatically induced silver deposition and subsequent electrochemical oxidation have been widely used in electrochemical biosensors. However, this method is ineffective for producing highly enhanced silver deposition for use in ultrasensitive detection. Herein, we report a fast silver deposition method that simultaneously uses three signal amplification processes: (i) enzymatic amplification, (ii) chemical-chemical (CC) redox cycling, and (iii) chemical-enzymatic (CN) redox cycling. DT-diaphorase (DT-D) is used for enzymatic amplification to convert a nitroso compound, a species incapable of directly reducing Ag+ to an amine compound, which can directly reduce Ag+. NADH acts as a reducing agent for the indirect reduction of Ag+ via the two redox cycling processes. 4-Nitroso-1-naphthol is converted to 4-amino-1-naphthol (NH2-N) in the presence of DT-D. NH2-N initiates two redox cycling processes: NH2-N, along with Ag+ and NADH, are involved in the CC redox cycling, whereas NH2-N, along with Ag+, DT-D, and NADH, are involved in the CN redox cycling. Finally, the deposited silver is electrochemically oxidized to produce a signal. When this triple signal amplification strategy for fast silver deposition is applied to an electrochemical immunosensor for detecting parathyroid hormone (PTH), a detection limit as low as, similar to 100 fg/mL is obtained. The concentrations of PTH in clinical serum determined using the developed immunosensor are found to agree with those measured using a commercial instrument. Thus, the use of this strategy for fast silver deposition is highly promising for ultrasensitive electrochemical detection and biosensing applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据