4.2 Article

Effect of selenium incorporation on the structure and in vitro bioactivity of 45S5 bioglass

期刊

JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY
卷 56, 期 2, 页码 697-709

出版社

SPRINGER
DOI: 10.1007/s41779-019-00388-6

关键词

Alkaline phosphatase; Biodegradation; Hydroxyapatite; Melt-derived bioactive ceramic; Selenium

向作者/读者索取更多资源

In vitro bioactivity, biodegradation, and biocompatibility behavior of a new bioactive glass systems were investigated with the incorporation of selenium oxide, for the replacement of sodium oxide in the traditional 45S5 bioglass composition. The apatite-forming ability of melt-derived bioactive glasses was evaluated by immersion studies in simulated body fluid while monitoring the concentration of silicon, calcium, phosphorus, sodium, and selenium in the medium. The weight loss of bioactive glasses and pH change in the tris-(hydroxymethyl)-amino methane buffer solution was determined to observe the biodegradation behavior of glass samples. The glasses were characterized by a Fourier transform infrared spectroscopy, scanning electron microscopy, inductively coupled plasma, and Vickers hardness measurements. The biocompatibility evaluation of the glasses was determined through in vitro osteogenesis assays by cell viability, alkaline phosphatase activity, and mineralized matrix formation. The incorporation of selenium enhanced the hydroxyapatite formation on the bioactive glass surface and microhardness of glasses. The hardness of glasses was found to decrease with immersion duration. The results indicate that selenium incorporated bioactive glasses can be used as bioactive material in bone tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据