4.4 Article

Design and analysis of demolition robot arm based on finite element method

期刊

ADVANCES IN MECHANICAL ENGINEERING
卷 11, 期 6, 页码 -

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/1687814019853964

关键词

Demolition robot; design of boom arm; modal analysis; structure optimization; mechanical model

资金

  1. National Natural Science Foundation of China [41672366]
  2. Fundamental Research Funds for the Central Universities [292018093]

向作者/读者索取更多资源

As a novel robot which mainly engages in the demolition and transformation of various concrete buildings, the demolition robot has developed rapidly in recent years. The impact force is mainly produced by the breaking hammer installed in the front end of the arm. As the most important part of a demolition robot, the boom arm is mainly composed of four parts including a supporting arm, a main arm, a fore arm, and a breaking hammer system. In this article, a mechanical model of the boom arm is established, and the finite element analysis obtaining the first four-order natural frequencies and modes is carried out in ANSYS Workbench. The results reveal that the resonation can be easily stimulated when a hydraulic breaking hammer is at the second-order frequency. The mounting block of the hydraulic breaking hammer, the hinge parts of the supporting arm, and the main arm are easily deformed or damaged in the Y direction by analyzing the deformation in three directions of the second-order mode. After the structure optimization, the vibration characteristics of the two parts are significantly enhanced, which provides a theoretical basis for optimizing the prototype and gives a reference in the experimental modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据