4.2 Article Proceedings Paper

Flow of nanofluid with Cattaneo-Christov heat flux model

期刊

APPLIED NANOSCIENCE
卷 10, 期 8, 页码 2989-2999

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s13204-019-01051-z

关键词

Gyrotactic microorganisms; Swirling cylinder; Cattaneo-Christov heat flux; Casson nanofluid; Zero mass flux condition; Chemical reaction

向作者/读者索取更多资源

This study explores the heat and mass transfer of Casson nanofluid flow containing gyrotactic microorganisms past a swirling cylinder. Fluid flow is generated owing to the torsional movement of the cylinder. An analysis is performed in the presence of gyrotactic microorganisms. The effects of chemical reaction, magnetohydrodynamics, heat generation/absorption, and zero mass flux condition are also considered. The Cattaneo-Christov heat flux model is initiated instead of conventional Fourier heat flux. Apposite transformations are betrothed to attain the coupled system of equations. The numerical solution is developed from the novel mathematical model via bvp4c function utilizing MATLAB software. Numerous graphs and tables are established to portray the inspiration of embroiled parameters on the flow distributions. To corroborate the presented results; a comparison to an already done published paper is also made. An excellent synchronization between the two results is obtained thus endorsing the presented model. Also, form the graphical structures and numerically erected tables, it is professed that concentration of the fluid is lessened owing to an upsurge in values of Reynolds number and Brownian motion parameter. Furthermore, diminishing density of microorganism is perceived for mounting estimates of bioconvection Peclet number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据