4.6 Review

Inferring Interaction Networks From Multi-Omics Data

期刊

FRONTIERS IN GENETICS
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2019.00535

关键词

systems biology; genomics; prior information; machine learning; personalized medicine; data integration; single cell; mixed data

资金

  1. German Research Foundation (DFG) within the Collaborative Research Centre 1243
  2. Helmholtz Association (Incubator grant sparse2big) [ZT-I-0007]
  3. Federal Ministry of Education and Research (BMBF, Germany) [01ZX1408D, 01ZX1708G]

向作者/读者索取更多资源

A major goal in systems biology is a comprehensive description of the entirety of all complex interactions between different types of biomolecules- also referred to as the interactome- and how these interactions give rise to higher, cellular and organism level functions or diseases. Numerous efforts have been undertaken to define such interactomes experimentally, for example yeast-two-hybrid based protein-protein interaction networks or ChIP-seq based protein-DNA interactions for individual proteins. To complement these direct measurements, genome-scale quantitative multi-omics data (transcriptomics, proteomics, metabolomics, etc.) enable researchers to predict novel functional interactions between molecular species. Moreover, these data allow to distinguish relevant functional from non-functional interactions in specific biological contexts. However, integration of multi-omics data is not straight forward due to their heterogeneity. Numerous methods for the inference of interaction networks from homogeneous functional data exist, but with the advent of large-scale paired multi-omics data a new class of methods for inferring comprehensive networks across different molecular species began to emerge. Here we review state-of-the-art techniques for inferring the topology of interaction networks from functional multi-omics data, encompassing graphical models with multiple node types and quantitative-trait-loci (QTL) based approaches. In addition, we will discuss Bayesian aspects of network inference, which allow for leveraging already established biological information such as known protein-protein or protein-DNA interactions, to guide the inference process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据