4.7 Article

Lithium niobate piezo-optomechanical crystals

期刊

OPTICA
卷 6, 期 7, 页码 845-853

出版社

OPTICAL SOC AMER
DOI: 10.1364/OPTICA.6.000845

关键词

-

类别

资金

  1. National Science Foundation (NSF) [1542152, 1708734, 1808100]
  2. Army Research Office (ARO) (CQTS)
  3. Office of Naval Research (ONR) (MURI) [N00014-151-2761]
  4. David and Lucile Packard Foundation (Packard Fellows Program)
  5. Fonds Wetenschappelijk Onderzoek (FWO) (FWO Marie Sklodowska-Curie) [665501]
  6. Stanford University (SGF)
  7. Div Of Electrical, Commun & Cyber Sys
  8. Directorate For Engineering [1808100, 1708734] Funding Source: National Science Foundation

向作者/读者索取更多资源

Demonstrating a device that efficiently connects light, motion, and microwaves is an outstanding challenge in classical and quantum photonics. We make significant progress in this direction by demonstrating a photonic crystal resonator on thin-film lithium niobate (LN) that simultaneously supports high-Q optical and mechanical modes, and where the mechanical modes are coupled piezoelectrically to microwaves. For optomechanical coupling, we leverage the photoelastic effect in LN by optimizing the device parameters to realize coupling rates g(0)/2 pi approximate to 120 kHz. An optomechanical cooperativity C > 1 is achieved leading to phonon lasing. Electrodes on the nanoresonator piezoelectrically drive mechanical waves on the beam that are then read out optically allowing direct observation of the phononic bandgap. Quantum coupling efficiency of eta approximate to 10(-8) from the input microwave port to the localized mechanical resonance is measured. Improvements of the microwave circuit and electrode geometry can increase this efficiency and bring integrated ultra-low-power modulators and quantum microwave-to-optical converters closer to reality. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据