4.8 Article

Brain Endothelial Cells Release Apical and Basolateral Microparticles in Response to Inflammatory Cytokine Stimulation: Relevance to Neuroinflammatory Stress?

期刊

FRONTIERS IN IMMUNOLOGY
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fimmu.2019.01455

关键词

inflammation; neurovascular; microparticle; extracellular vesicle; brain; endothelial

资金

  1. Annette Funicello Funds for Neurologic Disease
  2. Center for Cardiovascular Diseases and Sciences, LSU Health Sciences Center-Shreveport

向作者/读者索取更多资源

Microparticles (MP) are regarded both as biomarkers and mediators of many forms of pathology, including neurovascular inflammation. Here, we characterized vectorial release of apical and basolateral MPs (AMPs and BMPs) from control and TNF-alpha/IFN-gamma treated human brain endothelial monolayers, studied molecular composition of AMPs and BMPs and characterized molecular pathways regulating AMP and BMP release. The effects of AMPs and BMPs on blood-brain barrier properties and human brain microvascular smooth muscle tonic contractility in vitro were also evaluated. We report that human brain microvascular endothelial cells release MPs both apically and basolaterally with both AMP and BMP release significantly increased following inflammatory cytokine challenge (3.5-fold and 3.9-fold vs. control, respectively). AMPs and BMPs both carry proteins derived from parent cells including those in BBB junctions (Claudin-1, -3, -5, occludin, VE-cadherin). AMPs and BMPs represent distinct populations whose release appears to be regulated by distinctly separate molecular pathways, which depend on signaling from Rho-associated, coiled-coil containing protein kinase (ROCK), calpain as well as cholesterol depletion. AMPs and BMPs modulate functions of neighboring cells including BBB endothelial solute permeability and brain vascular smooth muscle contractility. While control AMPs enhanced brain endothelial barrier, cytokine-induced AMPs impaired BBB. Cytokine-induced but not control BMPs significantly impaired human brain smooth muscle contractility as early as day 1. Taken together these results indicate that AMPs and BMPs may contribute to neurovascular inflammatory disease progression both within the circulation (AMP) and in the brain parenchyma (BMP).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据