4.6 Article

Simulation-Based Development of a New Cylindrical-Cavity Microwave-Plasma Reactor for Diamond-Film Synthesis

期刊

CRYSTALS
卷 9, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/cryst9060320

关键词

microwave-plasma chemical-vapor deposition (MPCVD); cylindrical cavity; diamond films

资金

  1. National Natural Science Foundation of China [51727901]

向作者/读者索取更多资源

A 2.45 GHz microwave-plasma chemical-vapor deposition (MPCVD) reactor was designed and built in-house by collaborating with Guangdong TrueOne Semiconductor Technology Co., Ltd. A cylindrical cavity was designed as the deposition chamber and a circumferential coaxial-mode transformer located at the top of the cavity was adopted as the antenna. Two quartz-ring windows that were placed far away from the plasma and cooled by water-cooling cavity walls were used to affix the antenna to the cavity and act as a vacuum seal for the reactor, respectively. This design improved the sealing and protected the quartz windows. In addition, a numerical simulation was proposed to predict the electric-field and plasma-density distributions in the cavity. Based on the simulation results, a microwave-plasma reactor with TM021 mode was built. The leak rate of this new reactor was tested to be as low as 1 x 10(-8) Pam(3)s(-1), and the maximal microwave power was as high as 10 kW. Then, single-crystal diamond films were grown with the morphology and crystalline quality characterized by an optical microscope, atomic force microscope (AFM), Raman spectrometer, photoluminescence (PL) spectrometer, and high-resolution X-ray diffractometer. It was shown that the newly developed MPCVD reactor can produce diamond films with high quality and purity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据