4.5 Article

Disk masses in the Orion Molecular Cloud-2: distinguishing time and environment

期刊

ASTRONOMY & ASTROPHYSICS
卷 628, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201935378

关键词

stars: pre-main sequence; protoplanetary disks; techniques: interferometric

资金

  1. Netherlands Organisation for Scientific Research (NWO) [639.041.644]
  2. Spanish MINECO [AYA2016-79006-P]
  3. European Union A-ERC grant [291141 CHEMPLAN]
  4. Netherlands Research School for Astronomy (NOVA)
  5. Royal Netherlands Academy of Arts and Sciences (KNAW)
  6. ALLEGRO team

向作者/读者索取更多资源

Context. The mass evolution of protoplanetary disks is driven by internal processes and by external factors such as photoevaporation. Disentangling these two effects, however, remains difficult. Aims. We measured the dust masses of a sample of 132 disks in the Orion Molecular Cloud 2 (OMC-2) region, and compared them to externally photoevaporated disks in the Trapezium cluster, and to disks in nearby low-mass star-forming regions (SFRs). This allowed us to test whether initial disk properties are the same in high- and low-mass SFRs, and enabled a direct measurement of the effect of external photoevaporation on disks. Methods. A similar to 20' x 4' mosaic of 3 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) was used to measure the fluxes of 132 disks and 35 protostars >0.5 pc away from the Trapezium. We identify and characterize a sample of 34 point sources not included in the Spitzer catalog on which the sample is based. Results. Of the disks, 37 (28%) are detected, and have masses ranging from 7-270 M-circle plus. The detection rate for protostars is higher (69%). Disks near the Trapezium are found to be less massive by a factor 0.18(-0.11)(+)(0.18), implying a mass loss rate of 8 x 10(-8) M-circle dot yr( -1). Conclusions. Our observations allow us to distinguish the impact of time and environment on disk evolution in a single SFR. The disk mass distribution in OMC-2 is statistically indistinguishable from that in nearby low-mass SFRs like Lupus and Taurus. We conclude that age is the main factor that determines the evolution of these disks. This result is robust with respect to assumptions of dust temperature, sample incompleteness, and biases. The difference between the OMC-2 and Trapezium cluster samples is consistent with mass loss driven by far-ultraviolet radiation near the Trapezium. Taken together, this implies that in isolation disk formation and evolution proceed similarly, regardless of cloud mass.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据