4.5 Article

First grids of low-mass stellar models and isochrones with self-consistent treatment of rotation From 0.2 to 1.5 M⊙ at seven metallicities from PMS to TAMS

期刊

ASTRONOMY & ASTROPHYSICS
卷 631, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201935160

关键词

stars: evolution; stars: rotation; stars: low-mass; stars: pre-main sequence

资金

  1. grant ANR 2011 Blanc Toupies: Towards understanding the spin evolution of stars [SIMI5-6 020 01]
  2. European Research Council [ERC 682393]
  3. CEA
  4. CNES
  5. CNES fellowship

向作者/读者索取更多资源

Aims. We present an extended grid of state-of-the art stellar models for low-mass stars including updated physics (nuclear reaction rates, surface boundary condition, mass-loss rate, angular momentum transport, rotation-induced mixing, and torque prescriptions). We evaluate the impact of wind braking, realistic atmospheric treatment, rotation, and rotation-induced mixing on the structural and rotational evolution from the pre-main sequence (PMS) to the turn-off. Methods. Using the STAREVOL code, we provide an updated PMS grid. We computed stellar models for seven different metallicities, from [Fe/H] = 1 dex to [Fe/H] = +0.3 dex with a solar composition corresponding to Z = 0.0134. The initial stellar mass ranges from 0.2 to 1.5 M with extra grid refinement around one solar mass. We also provide rotating models for three different initial rotation rates (slow, median, and fast) with prescriptions for the wind braking and disc-coupling timescale calibrated on observed properties of young open clusters. The rotational mixing includes the most recent description of the turbulence anisotropy in stably stratified regions. Results. The overall behaviour of our models at solar metallicity, and their constitutive physics, are validated through a detailed comparison with a variety of distributed evolutionary tracks. The main differences arise from the choice of surface boundary conditions and initial solar composition. The models including rotation with our prescription for angular momentum extraction and self-consistent formalism for angular momentum transport are able to reproduce the rotation period distribution observed in young open clusters over a wide range of mass values. These models are publicly available and can be used to analyse data coming from present and forthcoming asteroseismic and spectroscopic surveys such as Gaia, TESS, and PLATO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据