4.5 Article

Non-thermal desorption of complex organic molecules Efficient CH3OH and CH3COOCH3 sputtering by cosmic rays

期刊

ASTRONOMY & ASTROPHYSICS
卷 627, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201834787

关键词

astrochemistry; cosmic rays; molecular processes; ISM: lines and bands; solid state: volatile; ISM: abundances

资金

  1. Programme National Physique et Chimie du Milieu Interstellaire (PCMI) of CNRS/INSU
  2. INC/INP
  3. CEA
  4. CNES
  5. P2IO LabEx program: Evolution de la matiere du milieu interstellaire aux exoplanetes avec le JWST
  6. ANR IGLIAS of the French Agence Nationale de la Recherche [ANR-13-BS05-0004]
  7. INSERM-INCA (Grant BIORAD)
  8. Region Normandie fonds Europeen de developpement regional-FEDER Programmation 2014-2020

向作者/读者索取更多资源

Context. The occurrence of complex organic molecules (COMs) in the gas phase at low temperature in the dense phases of the interstellar medium suggests that a non-thermal desorption mechanism is at work because otherwise, COMs should condense within a short timescale onto dust grains. Vacuum ultraviolet (VUV) photodesorption has been shown to be much less efficient for complex organic molecules, such as methanol, because mostly photoproducts are ejected. The induced photolysis competes with photodesorption for large COMs, which considerably lowers the efficiency to desorb intact molecules. Aims. We pursue an experimental work that has already shown that water molecules, the dominant ice mantle species, can be efficiently sputtered by cosmic rays. We investigate the sputtering efficiency of complex organic molecules that are observed either in the ice mantles of interstellar dense clouds directly by infrared spectroscopy (CH3OH), or that are observed in the gas phase by millimeter telescopes (CH3COOCH3) and that could be released from interstellar grain surfaces. Methods. We irradiated ice films containing complex organic molecules (methanol and methyl acetate) and water with swift heavy ions in the electronic sputtering regime. We monitored the infrared spectra of the film as well as the species released to the gas phase with a mass spectrometer. Results. We demonstrate that when methanol or methyl acetate is embedded in a water-ice mantle exposed to cosmic rays, a large portion is sputtered as an intact molecule, with a sputtering yield close to that of the main water-ice matrix. This must be even more true for the case of more volatile ice matrices, such as those that are embedded in carbon monoxide. Conclusions. Cosmic rays penetrating deep into dense clouds provide an efficient mechanism to desorb complex organic molecules. Compared to the VUV photons, which are induced by the interaction of cosmic rays, a large portion desorb as intact molecules with a proportion corresponding to the time-dependent bulk composition of the ice mantle, the latter evolving with time as a function of fluence due to the radiolysis of the bulk.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据