4.5 Article

Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy

期刊

AMB EXPRESS
卷 9, 期 -, 页码 -

出版社

SPRINGEROPEN
DOI: 10.1186/s13568-019-0810-9

关键词

E; coli; Bacteriophage; Biocontrol; Phage encapsulation

资金

  1. Zewail City of Science and Technology
  2. Science and Technology Development Fund (STDF) [25543]
  3. Biotechnology and Biological Sciences Research Council [BB/GCRF-IAA/15]

向作者/读者索取更多资源

Bacteriophages can be used successfully to treat pathogenic bacteria in the food chain including zoonotic pathogens that colonize the intestines of farm animals. However, harsh gastric conditions of low pH and digestive enzyme activities affect phage viability, and accordingly reduce their effectiveness. We report the development of a natural protective barrier suitable for oral administration to farm animals that confers acid stability before functional release of bead-encapsulated phages. Escherichia coli bacteriophage ZSEC5 is rendered inactive at pH 2.0 but encapsulation in chitosan-alginate bead with a honey and gelatin matrix limited titer reductions to 1log(10)PFUmL(-1). The encapsulated phage titers were stable upon storage in water but achieved near complete release over 4-5h in a simulated intestinal solution (0.1% bile salt, 0.4% pancreatin, 50mM KH2PO4 pH 7.5) at 37 degrees C. Exposure of E. coli O157:H7 to the bead-encapsulated phage preparations produced a delayed response, reaching a maximal reductions of 4.2 to 4.8log(10)CFUmL(-1) after 10h at 37 degrees C under simulated intestinal conditions compared to a maximal reduction of 5.1log(10)CFUmL(-1) at 3h for free phage applied at MOI=1. Bead-encapsulation is a promising reliable and cost-effective method for the functional delivery of bacteriophage targeting intestinal bacteria of farm animals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据