4.5 Article

Tailoring Storage Capacity and Ion Kinetics in Ti2CO2/Graphene Heterostructures by Functionalization of Graphene

期刊

PHYSICAL REVIEW APPLIED
卷 12, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.014001

关键词

-

资金

  1. University of North Dakota Early Career Award [20622-4000-02624]
  2. ND EPSCoR through NSF [OIA-1355466]
  3. TUBITAK [116F080]
  4. BAGEP Award of the Science Academy
  5. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]
  6. WOS program [192070]

向作者/读者索取更多资源

Using first-principles calculations, we evaluate the electrochemical performance of heterostructures made up of Ti2CO2 and chemically modified graphene for Li batteries. We find that heteroatom doping and molecule intercalation have a significant impact on the storage capacity and Li migration barrier energies. While N and S doping do not improve the storage capacity, B doping together with molecule interaction make it possible to intercalate two layers of Li, which stick separately to the surface of Ti2CO2 and B-doped graphene. The calculated diffusion-barrier energies (E-diff), which are between 0.3 and 0.4 eV depending on Li concentration, are quite promising for fast charge and discharge rates. Besides, the predicted E-diff as much as 2 eV for the diffusion of the Li atom from the Ti2CO2 surface to the B-doped graphene surface significantly suppresses the interlayer Li migration, which diminishes the charge and discharge rates. The calculated volume and lattice parameter changes indicate that Ti2CO2/graphene hybrid structures exhibit cyclic stability against Li loading and unloading. Consequently, first-principles calculations we perform evidently highlight the favorable effect of molecular intercalation on the capacity improvement of ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据