4.5 Article

Theory of Ion and Electron Transport Coupled with Biochemical Conversions in an Electroactive Biofilm

期刊

PHYSICAL REVIEW APPLIED
卷 12, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.12.014018

关键词

-

资金

  1. Netherlands Organisation for Scientific Research (NWO), Domain Applied and Engineering Science (TTW)
  2. Ministry of Economic Affairs (VENI grant) [13631]

向作者/读者索取更多资源

An electroactive biofilm is a porous layer of bacteria covering an electrode, which plays an important role in bioelectrochemical systems, such as in the microbial fuel cell. We derive a dynamic model of ion transport, biochemical reactions, and electron transport inside such a biofilm. After validating the model against data, we evaluate model output to obtain an understanding of the transport of ions and electrons through a current-producing biofilm. For a system fed with a typical wastewater stream containing organic molecules and producing 5 A m(-2), our model predicts that transport of the organic molecules is not a limiting factor. However, the pH deep within the biofilm drops significantly, which can inhibit current production of such biofilms. Our results suggest that the electronic conductivity of the biofilm does not limit charge transport significantly, even for a biofilm as thick as 100 mu m. Our study provides an example of how physics-based modeling helps to understand complex coupled processes in bioelectrochemical systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据