4.5 Article

Pyrite Morphology as an Indicator of Paleoredox Conditions and Shale Gas Content of the Longmaxi and Wufeng Shales in the Middle Yangtze Area, South China

期刊

MINERALS
卷 9, 期 7, 页码 -

出版社

MDPI
DOI: 10.3390/min9070428

关键词

syngenetic framboids; diagenetic framboids; paleoredox conditions; shale gas content; middle Yangtze area; South China

资金

  1. Key Program of National Natural Science Foundation of China [41472110]
  2. National Science and Technology Major Projects of China [2016ZX05034-001-05]
  3. China Geological Survey [12120115007201]

向作者/读者索取更多资源

Pyrite is the most common authigenic mineral preserved in many ancient sedimentary rocks. Pyrite also widely exists in the Longmaxi and Wufeng marine shales in the middle Yangtze area in South China. The Longmaxi and Wufeng shales were mainly discovered with 3 types of pyrites: pyrite framboids, euhedral pyrites and infilled framboids. Euhedral pyrites (Py4) and infilled framboids (Py5) belong to the diagenetic pyrites. Based on the formation mechanism of pyrites, the pyrites could be divided into syngenetic pyrites, early diagenetic pyrites, and late diagenetic pyrites. Under a scanning electron microscope (SEM), the syngenetic pyrites are mostly small framboids composed of small microcrystals, but the diagenetic pyrites are variable in shapes and the diagenetic framboids are variable in sizes with large microcrystals. Due to the deep burial stage, the pore space in the sediment was sharply reduced and the diameter of the late diagenetic framboids that formed in the pore space is similar to the diameter of the syngenetic framboids. However, the diameter of the syngenetic framboid microcrystals is suggested to range mainly from 0.3 mu m to 0.4 mu m, and that of the diagenetic framboid microcrystals is larger than 0.4 mu m in the study area. According to the diameter of the pyrite framboids (D) and the diameter of the framboid microcrystals (d), the pyrite framboids could be divided into 3 sizes: syngenetic framboids (Py1, D < 5 mu m, d <= 0.4 mu m), early diagenetic framboids (Py2, D > 5 mu m, d > 0.4 mu m) and late diagenetic framboids (Py3, D < 5 mu m, d > 0.4 mu m). Additionally, the mean size and standard deviation/skewness values of the populations of pyrite framboids were used to distinguish the paleoredox conditions during the sedimentary stage. In the study area, most of the pyrite framboids are smaller than 5 mu m, indicating the sedimentary water body was a euxinic environment. However, pyrite framboids larger than 5 mu m in the shales indicated that the sedimentary water body transformed to an oxic-dysoxic environment with relatively low total organic carbon (TOC: 0.4-0.99%). Furthermore, the size of the framboid microcrystals could be used to estimate the gas content due to thermochemical sulfate reduction (TSR). The process of TSR occurs with oxidation of organic matter (OM) and depletes the H bond of the OM, which will influence the amount of alkane gas produced from the organic matter during the thermal evolution. Thus, syngenetic pyrites (d ranges from 0.35 mu m to 0.37 mu m) occupy the main proportion of pyrites in the Wufeng shales with high gas content (1.30-2.30 m(3)/t), but the Longmaxi shales (d ranges from 0.35 mu m to 0.72 mu m) with a relatively low gas content (0.07-0.93 m(3)/t) contain diagenetic pyrites. Because of TSR, the increasing size of the microcrystals may result in an increase in the value of delta C-13(1) and a decrease in the value of delta C-13(1)-delta C-13(2). Consequently, the size of pyrite framboids and microcrystals could be widely used for rapid evaluation of the paleoredox conditions and the gas content in shales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据