4.8 Article

Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density

期刊

NANO ENERGY
卷 60, 期 -, 页码 591-599

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2019.04.008

关键词

Multi-shell particles; Hollow structures; Sodium-ion batteries; Anode materials; Operando synchrotron XRPD

资金

  1. Australian Research Council [DP160104866, DP170104464, LP160100927, DE150101234, FL170100154]
  2. Australian Research Council [DE150101234, LP160100927] Funding Source: Australian Research Council

向作者/读者索取更多资源

Low energy density is the key issue that needs to be addressed for sodium ion batteries. Antimony sulfide (Sb2S3) with high theoretical capacity is considered as an ideal anode, but it suffers from poor electrochemical activity and consequently, low energy density. Simple hollow Sb2S3 structures with high electrochemical activity offer high gravimetric energy density, while large internal voids significantly decrease the volumetric energy density. Here, multi-shell Sb2S3 was synthesized as an anode for sodium ion batteries, exhibiting much higher reversible capacity and gravimetric energy density than the pristine Sb2S3. Moreover, the multi-shell structure presents higher volumetric energy density with enhanced durability than its single-shell counterpart due to the optimized utilization of the inner void. Operando synchrotron-based X-ray powder diffraction (XRPD) was used to verify the enhanced electrochemical activity originated from more complete conversion electrochemical reactions. The multi-shell Sb2S3 design may provide a guide for the development of high-performance hollow structured anodes with preserved high energy density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据