4.4 Article

The dynamical diquark model: first numerical results

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 5, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP05(2019)061

关键词

Heavy Quark Physics; Lattice QCD

资金

  1. National Science Foundation (NSF) [PHY-1803912]
  2. Western Alliance to Expand Student Opportunities (WAESO) Louis Stokes Alliance for Minority Participation Bridge to the Doctorate (LSAMPBD) NSF [HRD-1702083]
  3. NASA traineeship grant

向作者/读者索取更多资源

We produce the first numerical predictions of the dynamical diquark model of multiquark exotic hadrons. Using Born-Oppenheimer potentials calculated numerically on the lattice, we solve coupled and uncoupled systems of Schrodinger equations to obtain mass eigenvalues for multiplets of states that are, at this stage, degenerate in spin and isospin. Assuming reasonable values for these fine-structure splittings, we obtain a series of bands of exotic states with a common parity eigenvalue that agree well with the experimentally observed charmoniumlike states, and we predict a number of other unobserved states. In particular, the most suitable fit to known pentaquark states predicts states below the charmonium-plus-nucleon threshold. Finally, we examine the strictest form of Born-Oppenheimer decay selection rules for exotics and, finding them to fail badly, we propose a resolution by relaxing the constraint that exotics must occur as heavy-quark spin-symmetry eigenstates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据