4.4 Review

From Synthesis to Applications: Copper Calcium Titanate (CCTO) and its Magnetic and Photocatalytic Properties

期刊

CHEMISTRYOPEN
卷 8, 期 7, 页码 922-950

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/open.201900133

关键词

ferroelectric materials; magnetic properties; perovskites; photocatalytic properties; copper calcium titanate

向作者/读者索取更多资源

Investigations focusing on electrical energy storage capacitors especially the dielectric ceramic capacitors for high energy storage density are attracting more and more attention in the recent years. Ceramic capacitors possess a faster charge-discharge rate and improved mechanical and thermal properties compared with other energy storage devices such as batteries. The challenge is to obtain ceramic capacitors with outstanding mechanical, thermal and storage properties over large temperature and frequencies ranges. ABO(3) as a type of perovskites showed a strong piezoelectric, dielectric, pyroelectric, and electro-optic properties useful as energy storage and environmental devices. CaCu3Ti4O12 (CCTO) perovskite with cubic lattice (Im3 symmetry) was discovered to have a colossal dielectric constant (10(4)) that is stable over a wide range of frequencies (10 Hz-1 MHz) and temperature independence (100-300 K). The origin of this high dielectric constant is not fully established, specially because it is the same for single crystal and thin films. In this review, the history of CCTO will be introduced. The synthesis and the sintering approaches, the dopant elements used as well as the applications of CCTO will be reported. In addition to dielectrical properties useful to energy storage devices; CCTO could serve as photocatalytic materials with a very good performance in visible light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据