4.5 Article Proceedings Paper

Feasibility of single-use 3D-printed instruments for total knee arthroplasty

期刊

BONE & JOINT JOURNAL
卷 101B, 期 7, 页码 115-120

出版社

BRITISH EDITORIAL SOC BONE JOINT SURGERY
DOI: 10.1302/0301-620X.101B7.BJJ-2018-1506.R1

关键词

-

向作者/读者索取更多资源

Aims This aim of this study was to assess the feasibility of designing and introducing generic 3D-printed instrumentation for routine use in total knee arthroplasty. Materials and Methods Instruments were designed to take advantage of 3D-printing technology, particularly ensuring that all parts were pre-assembled, to theoretically reduce the time and skill required during surgery. Concerning functionality, ranges of resection angle and distance were restricted within a safe zone, while accommodating either mechanical or anatomical alignment goals. To identify the most suitable biocompatible materials, typical instrument shapes and mating parts, such as dovetails and screws, were designed and produced. Results Before and after steam sterilization, dimensional analysis showed that acrylonitrile butadiene styrene could not withstand the temperatures without dimensional changes. Oscillating saw tests with slotted cutting blocks produced debris, fractures, or further dimensional changes in the shape of Nylon-12 and polymethylmethacrylate (MED610), but polyetherimide ULTEM 1010 was least affected. Conclusion The study showed that 3D-printed instrumentation was technically feasible and had some advantages. However, other factors, such as whether all procedural steps can be accomplished with a set of 3D-printed instruments, the logistics of delivery, and the economic aspects, require further study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据