4.5 Article

3D printed microfluidic devices with integrated valves

期刊

BIOMICROFLUIDICS
卷 9, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4905840

关键词

-

资金

  1. National Institutes of Health [R01 EB006124]

向作者/读者索取更多资源

We report the successful fabrication and testing of 3D printed microfluidic devices with integrated membrane-based valves. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 350 mu m wide and 250 mu m tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 350 mu m designed (210 mu m actual) diameters. Based on our previous work [Rogers et al., Anal. Chem. 83, 6418 (2011)], we use a custom resin formulation tailored for low non-specific protein adsorption. Valves are fabricated with a membrane consisting of a single build layer. The fluid pressure required to open a closed valve is the same as the control pressure holding the valve closed. 3D printed valves are successfully demonstrated for up to 800 actuations. (c) 2015 AIP Publishing LLC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据