4.7 Article

a Viscoelastic Properties of Polyelectrolyte Multilayers Swollen with Ionic Liquid Solutions

期刊

POLYMERS
卷 11, 期 8, 页码 -

出版社

MDPI
DOI: 10.3390/polym11081285

关键词

Kelvin-Voigt modeling; polyelectrolyte multilayers; ionic liquid; quartz crystal microbalance with dissipation; thickness; viscoelasticity; concentration regimes; swelling

资金

  1. NRW Research School Molecules and Materials-A Common Design Principle

向作者/读者索取更多资源

Polyelectrolyte multilayers (PEM) obtained by layer-by-layer assembly can be doped with ionic liquid (IL) via the swelling of the films with IL solutions. In order to examine the mechanical properties of IL-containing PEM, we implement a Kelvin-Voigt model to obtain thickness, viscosity and elastic modulus from the frequency and dissipation shifts determined by a dissipative quartz crystal microbalance (QCM-D). We analyze the changes in the modeled thickness and viscoelasticity of PEI(PSS/PADMAC)(4)PSS and PEI(PSS/PAH)(4)PSS multilayers upon swelling by increasing the concentration of either 1-Ethyl-3-methylimidazolium chloride or 1-Hexyl-3-methylimidazolium chloride, which are water soluble ILs. The results show that the thickness of the multilayers changes monotonically up to a certain IL concentration, whereas the viscosity and elasticity change in a non-monotonic fashion with an increasing IL concentration. The changes in the modeled parameters can be divided into three concentration regimes of IL, a behavior specific to ILs (organic salts), which does not occur with swelling by simple inorganic salts such as NaCl. The existence of the regimes is attributed to a competition of the hydrophobic interactions of large hydrophobic ions, which enhance the layer stability at a low salt content, with the electrostatic screening, which dominates at a higher salt content and causes a film softening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据