4.5 Article

Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 13, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0007349

关键词

-

资金

  1. Bill & Melinda Gates Foundation [OPP1176780]
  2. UK Medical Research Council
  3. Department for International Development
  4. MRC [MR/R015600/1] Funding Source: UKRI
  5. Bill and Melinda Gates Foundation [OPP1176780] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter term. Author summary Nearly 258 million people are infected worldwide by schistosome parasites. The World Health Organization (WHO) has set control guidelines to combat the morbidity and mortality induced by infection, defined by reaching <= 5% and <= 1% prevalence of heavy-intensity infections in school-aged children (SAC), respectively. Mass drug administration (MDA) is the major route for morbidity control and elimination. However, MDA does not provide long-term protection against schistosome parasites and frequent drug administration is therefore required to control morbidity. Infection does not induce lasting acquired immunity to reinfection. Drug resistance is another issue with MDA which, if it arises, could possibly make drug treatment ineffective over time as drug-resistant genes in the parasite population increase in frequency. A vaccine is ideally needed to both reduce the possibility of reinfection and to achieve transmission elimination within a feasible time frame. Based on the recent results obtained for a new candidate vaccine in the baboon animal model, we employ an individual-based stochastic model to assess the impact of a vaccine with an efficacy of 100% when applied in endemic regions with different intensities of transmission. Simulations suggest that the probability of achieving morbidity control and elimination as a public health problem depends on the duration of protection provided by vaccination, the age categories of the human host population vaccinated, and the coverage levels achieved. In order to achieve elimination as a public health problem, model simulations suggest that combining vaccination (with 5 years of protection) with MDA (treating 75% of school-aged children, 5-14 years of age) is the best option, particularly in high transmission settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据