4.7 Article

Extreme Learning Machine With Affine Transformation Inputs in an Activation Function

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TNNLS.2018.2877468

关键词

Affine transformation (AT) activation function; classification; extreme learning machine (ELM); maximum entropy; regression

资金

  1. National Natural Science Foundation of China [61503104, 61573123, 91648208]
  2. K. C. Wong Education Foundation
  3. Deutscher Akademischer Austauschdienst

向作者/读者索取更多资源

The extreme learning machine (ELM) has attracted much attention over the past decade due to its fast learning speed and convincing generalization performance. However, there still remains a practical issue to be approached when applying the ELM: the randomly generated hidden node parameters without tuning can lead to the hidden node outputs being nonuniformly distributed, thus giving rise to poor generalization performance. To address this deficiency, a novel activation function with an affine transformation (AT) on its input is introduced into the ELM, which leads to an improved ELM algorithm that is referred to as an AT-ELM in this paper. The scaling and translation parameters of the AT activation function are computed based on the maximum entropy principle in such a way that the hidden layer outputs approximately obey a uniform distribution. Application of the AT-ELM algorithm in nonlinear function regression shows its robustness to the range scaling of the network inputs. Experiments on nonlinear function regression, real-world data set classification, and benchmark image recognition demonstrate better performance for the AT-ELM compared with the original ELM, the regularized ELM, and the kernel ELM. Recognition results on benchmark image data sets also reveal that the AT-ELM outperforms several other state-of-the-art algorithms in general.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据