4.7 Article

Facile synthesis of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) nanosheets for DFT supported visible photocatalysis of 2-Chlorophenol

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-46544-7

关键词

-

资金

  1. Quid-i-Azam University, Islamabad [URF 2017]

向作者/读者索取更多资源

Visible light active g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) ternary composite nanosheets were fabricated by facile co-precipitation routes. The density functional theory (DFT) computations investigated changes in geometry and electronic character of g-C3N4 with CeO2 and Fe3O4 addition. Chemical and surface characterizations were explored with XRD, XPS, SEM, TEM, PL, DRS and Raman measurements. DRS and PL spectroscopy evidenced the energy band gap tailoring from 2.68 eV for bulk g-C3N4 and 2.92 eV for CeO2 to 2.45 eV for the ternary nanocomposite. Efficient electron/hole pair separation, increase in red-ox species and high exploitation of solar spectrum due to band gap tailoring lead to higher degradation efficiency of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01). Superior sun light photocatalytic breakdown of 2-Chlorophenol was observed with g-C3N4 having CeO2 loading up to 5 wt%. In case of ternary nanocomposites deposition of 1 wt% Fe3O4 over g-C3N4/CeO2 binary composite not only showed increment in visible light catalysis as predicted by the DFT studies, but also facilitated magnetic recovery. The g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) nanosheets showed complete mineralization of 25 mg.L-1 2-CP(aq) within 180 min exposure to visible portion of sun light and retained its high activity for 3 consecutive reuse cycles. The free radical scavenging showed superoxide ions and holes played a significant role compared to hydroxyl free radicals while chromatographic studies helped establish the 2-CP degradation mechanism. The kinetics investigations revealed 2.55 and 4.04 times increased rate of reactions compared to pristine Fe3O4 and CeO2, showing highest rate constant value of 18.2 x 10(-3) min(-1) for the ternary nanocomposite. We present very persuasive results that can be beneficial for exploration of further potential of g-C3N4(0.94)/CeO2(0.05)/Fe3O4(0.01) in advance wastewater treatment systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据