4.7 Article

Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-42909-0

关键词

-

资金

  1. National Natural Science Foundation of China [81771123]
  2. Jilin Provincial Industrial Technology Research and Development Project [2015Y038-3]

向作者/读者索取更多资源

Flavonoids (FLAs) possess anti-cancer, anti-viral, anti-bacterial, and anti-oxidant properties. In this study, gelatin nanoparticles (GNPs) with controllable surface potential and diameter was prepared through a modified two-step desolvation. Two well-known flavonoids, namely, low-molecular weight Genistein (GEN) and high-molecular weight Icariin (ICA), were adsorbed onto the surface of GNPs (FLA@GNPs). The characteristics of GNPs and the main parameters affecting flavonoid adsorption were studied to evaluate the adsorption capacity and structural stability of FLA@GNPs. Furthermore, co-adsorption of GEN and ICA was detected. The adsorption mechanism of GNPs with FLA was further discussed. Results showed that the low-molecular weight GEN could be effectively adsorbed by GNPs, and their entrapment efficiencies were over 90% under optimized conditions. The total drug loading of the co-adsorbed FLA@GNPs was significantly higher than that of the single drug loaded (GEN or ICA). GEN@GNPs could maintain its structural stability under acidic conditions (pH =2) at room temperature (25 degrees C). This protective function enables both ICA and GEN to be bioactive at room temperature for at least 180 days. The characteristics of GNPs adsorption indicate that the hydrogen bonding theory of the combination of gelatin molecules with polyphenols cannot sufficiently explain the binding of GNPs with polyphenols. FLA@GNPs is a promising general-purpose gelatin-based co-loading preload structure with simplified operation and storage condition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据