4.7 Article

Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-44548-x

关键词

-

资金

  1. JSPS KAKENHI from the Ministry of Economy, Trade and Industry, Japan (METI) [17K20009]
  2. Ministry of Economy, Trade and Industry, Japan (METI)
  3. Japan Agency for Medical Research and Development (AMED)
  4. Grants-in-Aid for Scientific Research [17K20009] Funding Source: KAKEN

向作者/读者索取更多资源

Protein phosphorylation on serine (S) and threonine (T) has emerged as a key device in the control of many biological processes. Recently phosphorylation in microbial organisms has attracted much attention for its critical roles in various cellular processes such as cell growth and cell division. Here a novel machine learning predictor, MPSite (Microbial Phosphorylation Site predictor), was developed to identify microbial phosphorylation sites using the enhanced characteristics of sequence features. The final feature vectors optimized via a Wilcoxon rank sum test. A random forest classifier was then trained using the optimum features to build the predictor. Benchmarking investigation using the 5-fold cross-validation and independent datasets test showed that the MPSite is able to achieve robust performance on the S-and T-phosphorylation site prediction. It also outperformed other existing methods on the comprehensive independent datasets. We anticipate that the MPSite is a powerful tool for proteome-wide prediction of microbial phosphorylation sites and facilitates hypothesis-driven functional interrogation of phosphorylation proteins. A web application with the curated datasets is freely available at http://kurata14.bio.kyutech.ac.jp/MPSite/.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据