4.7 Article

Anti-aging effects of long-term space missions, estimated by heart rate variability

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-45387-6

关键词

-

资金

  1. Japan Aerospace Exploration Agency
  2. Halberg Chronobiology Fund

向作者/读者索取更多资源

Reports that aging slows down in space prompted this investigation of anti-aging effects in humans by analyzing astronauts' heart rate variability (HRV). Ambulatory 48-hour electrocardiograms from 7 astronauts (42.1 +/- 6.8 years; 6 men) 20.6 +/- 2.7 days (ISS01) and 138.6 +/- 21.8 days (ISS02) after launch were divided into 24-hour spans of relative lower or higher magnetic disturbance, based on geomagnetic measures in Tromso, Norway. Magnetic disturbances were significantly higher on disturbed than on quiet days (ISS01: 72.01 +/- 33.82 versus 33.96 +/- 17.90 nT, P = 0.0307; 15502: 71.06 +/- 51.52 versus 32.53 +/- 27.27 nT, P = 0.0308). SDNNIDX was increased on disturbed days (by 5.5% during ISS01, P = 0.0110), as were other HRV indices during ISS02 (SDANN, 12.5%, P = 0.0243; Triangular Index, 8.4%, P = 0.0469; and TF-component, 17.2%, P = 0.0054), suggesting the action of an anti-aging or longevity effect. The effect on TF was stronger during light (12:00-17:00) than during darkness (0:00-05:00) (P = 0.0268). The brain default mode network (DMN) was activated, gauged by increases in the LF-band (9.7%, P = 0.0730) and MF1-band (9.9%, P = 0.0281). Magnetic changes in the magnetosphere can affect and enhance HRV indices in space, involving an anti-aging or longevity effect, probably in association with the brain DMN, in a light-dependent manner and/or with help from the circadian clock.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据