4.7 Article

Viral rescue of magnocellular vasopressin cells in adolescent Brattleboro rats ameliorates diabetes insipidus, but not the hypoaroused phenotype

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-44776-1

关键词

-

资金

  1. National Science Foundation Major Instrumentation Grant [DBI 0923133]
  2. National Science Foundation [IOS-1754878]
  3. University at Buffalo Research Foundation
  4. Max Planck Society
  5. Schaller Research Foundation

向作者/读者索取更多资源

Dysregulated arousal often accompanies neurodevelopmental disorders such as attention deficit hyperactivity disorder and autism spectrum disorder. Recently, we have found that adolescent homozygous Brattleboro (Hom) rats, which contain a mutation in the arginine vasopressin (AVP) gene, exhibit lower behavioral arousal than their heterozygous (Het) littermates in the open field test. This hypoaroused phenotype could be due to loss of AVP in magnocellular cells that supply AVP to the peripheral circulation and project to limbic structures or parvocellular cells that regulate the stress axis and other central targets. Alternatively, hypoarousal could be a side effect of diabetes insipidus - polydipsia and polyuria seen in Hom rats due to loss of AVP facilitation of water reabsorption in the kidney. We developed a viral-rescue approach to cure magnocellular AVP cells of their Brattleboro mutation. Infusion of a recombinant adeno-associated virus (rAAV) containing a functional Avp gene and promoter (rAAV-AVP) rescued AVP within magnocellular cells and fiber projections of the paraventricular nucleus of the hypothalamus (PVN) of male and female adolescent Hom rats. Furthermore, water intake was markedly reduced, ameliorating the symptoms of diabetes insipidus. In contrast, open field activity was unaffected. These findings indicate that the hyporaoused phenotype of adolescent Hom rats is not due to the loss of AVP function in magnocellular cells or a side effect of diabetes insipidus, but favors the hypothesis that central, parvocellular AVP mechanisms underlie the regulation of arousal during adolescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据