4.7 Article

Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE RESEARCH
DOI: 10.1038/s41598-019-45949-8

关键词

-

资金

  1. National Natural Science Foundation of China [51720105007, 51806031]
  2. Fundamental Research Funds for the Central Universities [DUT16RC(3)116]

向作者/读者索取更多资源

In this paper, we systematically investigate the effect of hydrostatic pressure on the phononic and electronic transport properties of orthorhombic p-type GeSe using first-principles based Boltzmann transport equation approach. It is found that the lattice thermal conductivities along the a and c directions increase with pressure, whereas it experiences a decrease along the b direction. This anomalous pressure dependent lattice thermal conductivity is attributed to the combined effect of enhanced phonon group velocity and reduced phonon lifetime. Additionally, the optical phonon branches have remarkable contributions to the total lattice thermal conductivity. The electronic transport calculations indicate that the Seebeck coefficient undergoes a sign change from p-type to n-type along the a direction under pressure, and a dramatic enhancement of the power factor is observed due to the boost of electrical conductivity. The predicted ZT values along the a, b, and c directions are 1.54, 1.09, and 1.01 at 700 K and 8 GPa, respectively, which are about 14, 7.3, and 1.9 times higher than those at zero pressure at experimental carrier concentration of similar to 10(18) cm(-3). Our study is expected to provide a guide for further optimization of the thermal and charge transport properties through hydrostatic pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据