4.7 Article

Relevance of a TCGA-derived Glioblastoma Subtype Gene-Classifier among Patient Populations

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-43173-y

关键词

-

向作者/读者索取更多资源

Glioblastoma multiforme (GBM), a deadly cancer, is the most lethal and common malignant brain tumor, and the leading cause of death in adult brain tumors. While genomic data continues to rocket, clinical application and translation to patient care are lagging behind. Big data now deposited in the TCGA network offers a window to generate novel clinical hypotheses. We hypothesized that a TCGAderived gene-classifier can be applied across different gene profiling platforms and population groups. This gene-classifier validated three robust GBM-subtypes across six different platforms, among Caucasian, Korean and Chinese populations: Three Caucasian-predominant TCGA-cohorts (Affymetrix U133A = 548, Agilent Custom-Array = 588, RNA-seq = 168), and three Asian-cohorts (Affymetrix Human Gene 1.0ST-Array = 61, Illumina = 52, Agilent 4 x 44 K = 60). To understand subtype-relevance in patient therapy, we investigated retrospective TCGA patient clinical sets. Subtype-specific patient survival outcome was similarly poor and reflected the net result of a mixture of treatment regimens with/without surgical resection. As a proof-of-concept, in subtype-specific patient-derived orthotopic xenograft (PDOX) mice, Classical-subtype demonstrated no survival difference comparing radiationtherapy versus temozolomide monotherapies. Though preliminary, a PDOX model of Proneural/Neuralsubtype demonstrated significantly improved survival with temozolomide compared to radiationtherapy. A larger scale study using this gene-classifier may be useful in clinical outcome prediction and patient selection for trials based on subtyping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据