4.7 Article

Atomic-scale diffusion rates during growth of thin metal films on weakly-interacting substrates

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-43107-8

关键词

-

资金

  1. French Government program Investissements d'Avenir (LABEX INTERACTIFS) [ANR-11-LABX-0017-01]
  2. Linkoping University (LiU Career Contract) [Dnr-LiU-2015-01510]
  3. Swedish research council [VR-2015-04630]
  4. Olle Engkvist foundation [SOEB 190-312]
  5. Olle Engkvist Foundation

向作者/读者索取更多资源

We use a combined experimental and theoretical approach to study the rates of surface diffusion processes that govern early stages of thin Ag and Cu film morphological evolution on weakly-interacting amorphous carbon substrates. Films are deposited by magnetron sputtering, at temperatures T-S between 298 and 413 K, and vapor arrival rates F in the range 0.08 to 5.38 monolayers/s. By employing in situ and real-time sheet-resistance and wafer-curvature measurements, we determine the nominal film thickness Theta at percolation (Theta(perc)) and continuous film formation (Theta(cont)) transition. Subsequently, we use the scaling behavior of Theta(perc) and Theta(cont) as a function of F and T-s, to estimate, experimentally, the temperature-dependent diffusivity on the substrate surface, from which we calculate Ag and Cu surface migration energy barriers E-D(exp) and attempt frequencies nu(exp)(0). By critically comparing E-D(exp) and nu(exp)(0) with literature data, as well as with results from our ab initio molecular dynamics simulations for single Ag and Cu adatom diffusion on graphite surfaces, we suggest that: (i) E-D(exp) and nu(exp)(0) correspond to diffusion of multiatomic clusters, rather than to diffusion of monomers; and (ii) the mean size of mobile clusters during Ag growth is larger compared to that of Cu. The overall results of this work pave the way for studying growth dynamics in a wide range of technologically-relevant weakly-interacting film/substrate systems-including metals on 2D materials and oxides-which are building blocks in next-generation nanoelectronic, optoelectronic, and catalytic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据