4.7 Article

Computational prediction and in vitro validation of VEGFR1 as a novel protein target for 2,3,7,8-tetrachlorodibenzo-p-dioxin

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-43232-4

关键词

-

资金

  1. NIH [R01ES019313, R01MH094755, R01AI123947, R01 AI129788, P01 AT003961, P20 GM103641, R01 AT006888]

向作者/读者索取更多资源

The toxic manifestations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, primarily depend on its ability to activate aryl hydrocarbon receptor (AhR), which is a ligand-dependent transcription factor belonging to the superfamily of basic-helix-loop-helix DNA-binding proteins. In the present study, we aimed to identify novel protein receptor targets for TCDD using computational and in vitro validation experiments. Interestingly, results from computational methods predicted that Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) could be one of the potential targets for TCDD in both mouse and humans. Results from molecular docking studies showed that human VEGFR1 (hVEGFR1) has less affinity towards TCDD compared to the mouse VEGFR1 (mVEGFR1). In vitro validation results showed that TCDD can bind and phosphorylate hVEGFR1. Further, results from molecular dynamic simulation studies showed that hVEGFR1 interaction with TCDD is stable throughout the simulation time. Overall, the present study has identified VEGFR1 as a novel target for TCDD, which provides the basis for further elucidating the role of TCDD in angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据