4.7 Article

The Metabolomic Signature of Opa1 Deficiency in Rat Primary Cortical Neurons Shows Aspartate/Glutamate Depletion and Phospholipids Remodeling

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-42554-7

关键词

-

资金

  1. Institut National de la Sante et de la Recherche Medicale (INSERM)
  2. Centre National de la Recherche Scientifique (CNRS)
  3. University of Angers
  4. University Hospital of Angers
  5. University of Toulouse Paul Sabatier
  6. Kjer France
  7. Fondation VISIO
  8. Ouvrir les Yeux
  9. Union Nationale des Aveugles et Deficients Visuels
  10. Association contre les Maladies Mitochondriales
  11. Retina France
  12. Association Point de Mire

向作者/读者索取更多资源

Pathogenic variants of OPA1, which encodes a dynamin GTPase involved in mitochondrial fusion, are responsible for a spectrum of neurological disorders sharing optic nerve atrophy and visual impairment. To gain insight on OPA1 neuronal specificity, we performed targeted metabolomics on rat cortical neurons with OPA1 expression inhibited by RNA interference. Of the 103 metabolites accurately measured, univariate analysis including the Benjamini-Hochberg correction revealed 6 significantly different metabolites in OPA1 down-regulated neurons, with aspartate being the most significant (p < 0.001). Supervised multivariate analysis by OPLS-DA yielded a model with good predictive capability (Q(cum)(2) = 0.65) and a low risk of over-fitting (permQ2 = -0.16, CV-ANOVA p-value 0.036). Amongst the 46 metabolites contributing the most to the metabolic signature were aspartate, glutamate and threonine, which all decreased in OPA1 down-regulated neurons, and lysine, 4 sphingomyelins, 4 lysophosphatidylcholines and 32 phosphatidylcholines which were increased. The phospholipid signature may reflect intracellular membrane remodeling due to loss of mitochondrial fusion and/or lipid droplet accumulation. Aspartate and glutamate deficiency, also found in the plasma of OPA1 patients, is likely the consequence of respiratory chain deficiency, whereas the glutamate decrease could contribute to the synaptic dysfunction that we previously identified in this model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据