4.7 Article

Optimization of Bone Scaffold Porosity Distributions

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-44872-2

关键词

-

资金

  1. German Scholars Organizaton/Carl-Zeiss-Stiftung
  2. German Research Foundation (DFG)
  3. Albert-Ludwigs-University Freiburg

向作者/读者索取更多资源

Additive manufacturing (AM) is a rapidly emerging technology that has the potential to produce personalized scaffolds for tissue engineering applications with unprecedented control of structural and functional design. Particularly for bone defect regeneration, the complex coupling of biological mechanisms to the scaffolds' properties has led to a predominantly trial-and-error approach. To mitigate this, shape or topology optimization can be a useful tool to design a scaffold architecture that matches the desired design targets, albeit at high computational cost. Here, we consider an efficient macroscopic optimization routine based on a simple one-dimensional time-dependent model for bone regeneration in the presence of a bioresorbable polymer scaffold. The result of the optimization procedure is a scaffold porosity distribution which maximizes the stiffness of the scaffold and regenerated bone system over the entire regeneration time, so that the propensity for mechanical failure is minimized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据