4.7 Article

Noisy galvanic vestibular stimulation modulates spatial memory in young healthy adults

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-45757-0

关键词

-

资金

  1. DZNE
  2. Bundesministerium fur Bildung und Forschung [BMBF FZK 01GQ1424D]
  3. German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) [EXC 2050/1, 390696704]

向作者/读者索取更多资源

Hippocampal and striatal circuits play important roles in spatial navigation. These regions integrate environmental information and receive intrinsic afferent inputs from the vestibular system. Past research indicates that galvanic vestibular stimulation (GVS) is a non-invasive technique that modulates hippocampal and striatal activities. There are also evidences for enhanced motor and cognitive functions through GVS. This study extends previous research to investigate whether noisy GVS may improve hippocampal- and striatal-associated aspects of spatial navigation performance. Using a virtual navigation task, we examined effects of noisy GVS on spatial learning and memory. To probe the participants' sensitivity to hippocampal- or striatal-associated spatial information, we either enlarged the virtual environment's boundary or replaced an intra-environmental location cue, respectively. Noisy GVS or sham stimulation was applied online during the learning phase in a within-subject crossover design. The results showed that noisy GVS enhanced spatial learning and the sensitivity foremost to hippocampal-dependent spatial information both in males and females. Individual differences in spatial working memory capacity moderated the effects of GVS, with individuals with lower capacity benefitting more from the stimulation. Furthermore, sex-related differences in GVS effects on the two forms of spatial representations may reflect differences between males and females in preferred spatial strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据