4.7 Article

A composite of platelet-like orientated BiVO4 fused with MIL-125(Ti): Synthesis and characterization

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-46498-w

关键词

-

资金

  1. University of Johannesburg (URC)
  2. Faculty of Science (FRC), Centre for Nanomaterials Science Research and Eskom (TESP)

向作者/读者索取更多资源

The development of heterojunctions is the current focus of the scientific community as these materials are visible light active and the staggered positioning of their band edges combats electron-hole recombination which is the downside of most photocatalysts. In this work, a two-step hydrothermal synthesis protocol was utilized to fabricate a novel observable-light active material, composed of platelet-like BiVO4 and a titanium-based metal organic framework (MOF) called MIL-125(Ti). The tuning of specific morphologies, such as platelet-like in BiVO4, provides the exposure of most reactive facets which are more reactive towards photooxidation of organics in water, thus increasing their efficiency. The as-synthesized heterojunction was characterized by Transmission electron microscopy (TEM), scanning transmission microscopy (SEM), X-Ray diffraction (XRD), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), X-Ray photoelectron spectroscopy (XPS) and photoluminescence (PL) spectra. The formation of the heterojunction lead to a positive shift of the 3-2 Bi:Ti valence band (VB) (1.78 eV) when compared to 1.27 eV VB position of BiVO4. The PL and photoelectrochemical measurements revealed that the heterojunction photocatalyst designated 3-2 Bi-Ti demonstrated inhibited recombination rate (platelet-like BiVO4 > 3-2 Bi:Ti (PM) > MIL-125 > 1-1 Bi:Ti > 2-3 Bi:Ti > 3-2 Bi:Ti) and highly efficient interfacial charge shuttle between platelet-like BiVO4 and MIL-125(Ti) through the formed n-n junction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据