4.6 Article

UAV wildlife radiotelemetry: System and methods of localization

期刊

METHODS IN ECOLOGY AND EVOLUTION
卷 10, 期 10, 页码 1783-1795

出版社

WILEY
DOI: 10.1111/2041-210X.13261

关键词

drone; localization; principal component analysis; software-defined radio; unmanned aerial system; unmanned aerial vehicle; VHF tag

类别

资金

  1. Division of Biological Infrastructure [1556417]
  2. National Science Foundation
  3. Div Of Biological Infrastructure
  4. Direct For Biological Sciences [1556417] Funding Source: National Science Foundation

向作者/读者索取更多资源

The majority of bird and bat species are incapable of carrying tags that transmit their position to satellites. Given fundamental power requirements for such communication, burdened mass guidelines and battery technology, this constraint necessitates the continued use of very high frequency (VHF) radio beacons. As such, efforts should be made to mitigate their primary deficiencies: detection range, localization time and localization accuracy. The integration of a radiotelemetry system with an unmanned aerial vehicle (UAV) could significantly improve the capacity for data collection from VHF tags. We present a UAV-integrated radiotelemetry system that relies on open source hardware and software. Localization methods, including signal processing, bearing estimation based on principal component analysis, localization techniques and test results, are discussed. Using a low-power beacon applicable for bats and small birds, testing showed that the improved vantage of the UAV-radiotelemetry system (UAV-RT) provided significantly higher received signal power compared to the low-level flights (maximum range beyond 1.4 km). Flight testing of localization methods showed median bearing errors between 2.3 degrees and 6.8 degrees, with localization errors of between 5% and 14% of the distance to the tag. In a direct comparison to an experienced radiotelemetry user, the UAV-RT system provided bearing and localization estimates with 53% less error. This paper introduces the core functionality and use methods of the UAV-RT system, while presenting baseline localization performance metrics. An associated website hosts plans for assembly and software installation. The methods of UAV-RT use for tag detection will be further developed in future works. For both the detection and localization problems, the mobility of a flying asset drastically reduces tracker time requirements. A 7-min flight would be sufficient to collect five equally spaced bearing estimates over a 1-km transect. The use of a software-defined radio on the UAV-RT system will allow for the simultaneous detection and localization of multiple tags.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据